A generalization of manifolds with corners

<p>In conventional Differential Geometry one studies manifolds, locally modelled on ${\mathbb R}^n$, manifolds with boundary, locally modelled on $[0,\infty)\times{\mathbb R}^{n-1}$, and manifolds with corners, locally modelled on $[0,\infty)^k\times{\mathbb R}^{n-k}$. They form categories ${\...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Joyce, D
स्वरूप: Journal article
प्रकाशित: Elsevier 2016
_version_ 1826290320452616192
author Joyce, D
author_facet Joyce, D
author_sort Joyce, D
collection OXFORD
description <p>In conventional Differential Geometry one studies manifolds, locally modelled on ${\mathbb R}^n$, manifolds with boundary, locally modelled on $[0,\infty)\times{\mathbb R}^{n-1}$, and manifolds with corners, locally modelled on $[0,\infty)^k\times{\mathbb R}^{n-k}$. They form categories ${\bf Man}\subset{\bf Man^b}\subset{\bf Man^c}$. Manifolds with corners $X$ have boundaries $\partial X$, also manifolds with corners, with $\mathop{\rm dim}\partial X=\mathop{\rm dim} X-1$.</p> <p>We introduce a new notion of &amp;apos;manifolds with generalized corners&amp;apos;, or &amp;apos;manifolds with g-corners&amp;apos;, extending manifolds with corners, which form a category $\bf Man^{gc}$ with ${\bf Man}\subset{\bf Man^b}\subset{\bf Man^c}\subset{\bf Man^{gc}}$. Manifolds with g-corners are locally modelled on $X_P=\mathop{\rm Hom}_{\bf Mon}(P,[0,\infty))$ for $P$ a weakly toric monoid, where $X_P\cong[0,\infty)^k\times{\mathbb R}^{n-k}$ for $P={\mathbb N}^k\times{\mathbb Z}^{n-k}$.</p> <p>Most differential geometry of manifolds with corners extends nicely to manifolds with g-corners, including well-behaved boundaries $\partial X$. In some ways manifolds with g-corners have better properties than manifolds with corners; in particular, transverse fibre products in $\bf Man^{gc}$ exist under much weaker conditions than in $\bf Man^c$.</p> <p>This paper was motivated by future applications in symplectic geometry, in which some moduli spaces of $J$-holomorphic curves can be manifolds or Kuranishi spaces with g-corners (see the author arXiv:1409.6908) rather than ordinary corners.</p> <p>Our manifolds with g-corners are related to the &amp;apos;interior binomial varieties &amp;apos; of Kottke and Melrose in arXiv:1107.3320.</p>
first_indexed 2024-03-07T02:42:23Z
format Journal article
id oxford-uuid:aae43930-40d8-4e31-a00c-6b45b5b36ed8
institution University of Oxford
last_indexed 2024-03-07T02:42:23Z
publishDate 2016
publisher Elsevier
record_format dspace
spelling oxford-uuid:aae43930-40d8-4e31-a00c-6b45b5b36ed82022-03-27T03:18:14ZA generalization of manifolds with cornersJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:aae43930-40d8-4e31-a00c-6b45b5b36ed8Symplectic Elements at OxfordElsevier2016Joyce, D<p>In conventional Differential Geometry one studies manifolds, locally modelled on ${\mathbb R}^n$, manifolds with boundary, locally modelled on $[0,\infty)\times{\mathbb R}^{n-1}$, and manifolds with corners, locally modelled on $[0,\infty)^k\times{\mathbb R}^{n-k}$. They form categories ${\bf Man}\subset{\bf Man^b}\subset{\bf Man^c}$. Manifolds with corners $X$ have boundaries $\partial X$, also manifolds with corners, with $\mathop{\rm dim}\partial X=\mathop{\rm dim} X-1$.</p> <p>We introduce a new notion of &amp;apos;manifolds with generalized corners&amp;apos;, or &amp;apos;manifolds with g-corners&amp;apos;, extending manifolds with corners, which form a category $\bf Man^{gc}$ with ${\bf Man}\subset{\bf Man^b}\subset{\bf Man^c}\subset{\bf Man^{gc}}$. Manifolds with g-corners are locally modelled on $X_P=\mathop{\rm Hom}_{\bf Mon}(P,[0,\infty))$ for $P$ a weakly toric monoid, where $X_P\cong[0,\infty)^k\times{\mathbb R}^{n-k}$ for $P={\mathbb N}^k\times{\mathbb Z}^{n-k}$.</p> <p>Most differential geometry of manifolds with corners extends nicely to manifolds with g-corners, including well-behaved boundaries $\partial X$. In some ways manifolds with g-corners have better properties than manifolds with corners; in particular, transverse fibre products in $\bf Man^{gc}$ exist under much weaker conditions than in $\bf Man^c$.</p> <p>This paper was motivated by future applications in symplectic geometry, in which some moduli spaces of $J$-holomorphic curves can be manifolds or Kuranishi spaces with g-corners (see the author arXiv:1409.6908) rather than ordinary corners.</p> <p>Our manifolds with g-corners are related to the &amp;apos;interior binomial varieties &amp;apos; of Kottke and Melrose in arXiv:1107.3320.</p>
spellingShingle Joyce, D
A generalization of manifolds with corners
title A generalization of manifolds with corners
title_full A generalization of manifolds with corners
title_fullStr A generalization of manifolds with corners
title_full_unstemmed A generalization of manifolds with corners
title_short A generalization of manifolds with corners
title_sort generalization of manifolds with corners
work_keys_str_mv AT joyced ageneralizationofmanifoldswithcorners
AT joyced generalizationofmanifoldswithcorners