Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
The estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimi...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
American Physical Society
2024
|
_version_ | 1824459022403633152 |
---|---|
author | Wang, B Zheng, K Xie, Q Zhang, A Xu, L Zhang, L |
author_facet | Wang, B Zheng, K Xie, Q Zhang, A Xu, L Zhang, L |
author_sort | Wang, B |
collection | OXFORD |
description | The estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimizing the parameters encoding strategies with the aid of antiunitary symmetry is a novel and comprehensive approach. For demonstration, we propose two types of quantum statistical models exhibiting antiunitary symmetry in experiments. The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off and the precision is improved at least twice compared to conventional encoding strategies. Our work emphasizes the significant potential of antiunitary symmetry in addressing multiparameter estimation problems. |
first_indexed | 2025-02-19T04:35:10Z |
format | Journal article |
id | oxford-uuid:ab96c5d2-f99d-47ce-8109-5bef1528edc4 |
institution | University of Oxford |
language | English |
last_indexed | 2025-02-19T04:35:10Z |
publishDate | 2024 |
publisher | American Physical Society |
record_format | dspace |
spelling | oxford-uuid:ab96c5d2-f99d-47ce-8109-5bef1528edc42025-01-22T14:01:06ZAchieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ab96c5d2-f99d-47ce-8109-5bef1528edc4EnglishSymplectic ElementsAmerican Physical Society2024Wang, BZheng, KXie, QZhang, AXu, LZhang, LThe estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimizing the parameters encoding strategies with the aid of antiunitary symmetry is a novel and comprehensive approach. For demonstration, we propose two types of quantum statistical models exhibiting antiunitary symmetry in experiments. The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off and the precision is improved at least twice compared to conventional encoding strategies. Our work emphasizes the significant potential of antiunitary symmetry in addressing multiparameter estimation problems. |
spellingShingle | Wang, B Zheng, K Xie, Q Zhang, A Xu, L Zhang, L Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title | Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title_full | Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title_fullStr | Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title_full_unstemmed | Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title_short | Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry |
title_sort | achieving the multiparameter quantum cramer rao bound with antiunitary symmetry |
work_keys_str_mv | AT wangb achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry AT zhengk achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry AT xieq achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry AT zhanga achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry AT xul achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry AT zhangl achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry |