Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry

The estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimi...

Full description

Bibliographic Details
Main Authors: Wang, B, Zheng, K, Xie, Q, Zhang, A, Xu, L, Zhang, L
Format: Journal article
Language:English
Published: American Physical Society 2024
_version_ 1824459022403633152
author Wang, B
Zheng, K
Xie, Q
Zhang, A
Xu, L
Zhang, L
author_facet Wang, B
Zheng, K
Xie, Q
Zhang, A
Xu, L
Zhang, L
author_sort Wang, B
collection OXFORD
description The estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimizing the parameters encoding strategies with the aid of antiunitary symmetry is a novel and comprehensive approach. For demonstration, we propose two types of quantum statistical models exhibiting antiunitary symmetry in experiments. The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off and the precision is improved at least twice compared to conventional encoding strategies. Our work emphasizes the significant potential of antiunitary symmetry in addressing multiparameter estimation problems.
first_indexed 2025-02-19T04:35:10Z
format Journal article
id oxford-uuid:ab96c5d2-f99d-47ce-8109-5bef1528edc4
institution University of Oxford
language English
last_indexed 2025-02-19T04:35:10Z
publishDate 2024
publisher American Physical Society
record_format dspace
spelling oxford-uuid:ab96c5d2-f99d-47ce-8109-5bef1528edc42025-01-22T14:01:06ZAchieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ab96c5d2-f99d-47ce-8109-5bef1528edc4EnglishSymplectic ElementsAmerican Physical Society2024Wang, BZheng, KXie, QZhang, AXu, LZhang, LThe estimation of multiple parameters is a ubiquitous requirement in many quantum metrology applications. However, achieving the ultimate precision limit, i.e., the quantum Cramér-Rao bound, becomes challenging in these scenarios compared to single parameter estimation. To address this issue, optimizing the parameters encoding strategies with the aid of antiunitary symmetry is a novel and comprehensive approach. For demonstration, we propose two types of quantum statistical models exhibiting antiunitary symmetry in experiments. The results showcase the simultaneous achievement of ultimate precision for multiple parameters without any trade-off and the precision is improved at least twice compared to conventional encoding strategies. Our work emphasizes the significant potential of antiunitary symmetry in addressing multiparameter estimation problems.
spellingShingle Wang, B
Zheng, K
Xie, Q
Zhang, A
Xu, L
Zhang, L
Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title_full Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title_fullStr Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title_full_unstemmed Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title_short Achieving the multiparameter quantum Cramér-Rao bound with antiunitary symmetry
title_sort achieving the multiparameter quantum cramer rao bound with antiunitary symmetry
work_keys_str_mv AT wangb achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry
AT zhengk achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry
AT xieq achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry
AT zhanga achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry
AT xul achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry
AT zhangl achievingthemultiparameterquantumcramerraoboundwithantiunitarysymmetry