VariBAD: variational bayes-adaptive deep RL via meta-learning
Trading off exploration and exploitation in an unknown environment is key to maximising expected online return during learning. A Bayes-optimal policy, which does so optimally, conditions its actions not only on the environment state but also on the agent's uncertainty about the environment. Co...
1. autor: | Whiteson, S |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Journal of Machine Learning Research
2021
|
Podobne zapisy
-
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
od: Zintgraf, L, i wsp.
Wydane: (2020) -
Knowledge Transfer in Deep Reinforcement Learning via an RL-Specific GAN-Based Correspondence Function
od: Marko Ruman, i wsp.
Wydane: (2024-01-01) -
PharmRL: pharmacophore elucidation with deep geometric reinforcement learning
od: Rishal Aggarwal, i wsp.
Wydane: (2024-12-01) -
Fast Context Adaptation via Meta-Learning
od: Zintgraf, L, i wsp.
Wydane: (2019) -
Experience Replay Optimisation via ATSC and TSC for Performance Stability in Deep RL
od: Richard Sakyi Osei, i wsp.
Wydane: (2023-02-01)