Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor

Traditional synthetic routes for transition metal sulfides typically involve solution and thermal-based processes to exploit their favorable pseudo-capacitive properties. However, there is a practical need to develop alternative processes to fabricate metal sulfide electrodes because of the time-con...

Full description

Bibliographic Details
Main Authors: Hong, J, Kim, B, Yang, S, Jang, A, Lee, Y, Pak, S, Lee, S, Cho, Y, Kang, D, Shin, H, Morris, S, Cha, S, Sohn, J, Kim, J
Format: Journal article
Language:English
Published: Royal Society of Chemistry 2019
Description
Summary:Traditional synthetic routes for transition metal sulfides typically involve solution and thermal-based processes to exploit their favorable pseudo-capacitive properties. However, there is a practical need to develop alternative processes to fabricate metal sulfide electrodes because of the time-consuming processes (>12 h), additional heat-treatment to active reactants, relatively high post-heat-treatment temperature (200–400 °C) and non-scalable nature of existing synthetic routes. Herein, utilizing a solution-based sulfur precursor, one-dimensional single-crystalline Cu2S nanostructures have been successfully prepared via a solution-based direct synthesis process within 10 min at room temperature without the need for thermal treatment steps. The fabricated electrode exhibits a capacitance of 750 mF cm−2 at a current density of 2 mA cm−2. Moreover, the rate capacitance is maintained at about 82.3% as the current density is increased to 40 mA cm−2, and the capacity retains 90.5% of the initial value after 20 000 cycles. Importantly, as this method involves a solution-based formulation it is compatible with roll-to-roll processes, which is promising for mass and scalable production of the electrodes. The synthetic method ensures a facile and efficient approach to fabricating scalable one-dimensional single crystalline Cu2S nanostructures, highlighting the uniqueness of the solution-based sulfur activation method.