Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor

Traditional synthetic routes for transition metal sulfides typically involve solution and thermal-based processes to exploit their favorable pseudo-capacitive properties. However, there is a practical need to develop alternative processes to fabricate metal sulfide electrodes because of the time-con...

Descripció completa

Dades bibliogràfiques
Autors principals: Hong, J, Kim, B, Yang, S, Jang, A, Lee, Y, Pak, S, Lee, S, Cho, Y, Kang, D, Shin, H, Morris, S, Cha, S, Sohn, J, Kim, J
Format: Journal article
Idioma:English
Publicat: Royal Society of Chemistry 2019
_version_ 1826290779736244224
author Hong, J
Kim, B
Yang, S
Jang, A
Lee, Y
Pak, S
Lee, S
Cho, Y
Kang, D
Shin, H
Hong, J
Morris, S
Cha, S
Sohn, J
Kim, J
author_facet Hong, J
Kim, B
Yang, S
Jang, A
Lee, Y
Pak, S
Lee, S
Cho, Y
Kang, D
Shin, H
Hong, J
Morris, S
Cha, S
Sohn, J
Kim, J
author_sort Hong, J
collection OXFORD
description Traditional synthetic routes for transition metal sulfides typically involve solution and thermal-based processes to exploit their favorable pseudo-capacitive properties. However, there is a practical need to develop alternative processes to fabricate metal sulfide electrodes because of the time-consuming processes (>12 h), additional heat-treatment to active reactants, relatively high post-heat-treatment temperature (200–400 °C) and non-scalable nature of existing synthetic routes. Herein, utilizing a solution-based sulfur precursor, one-dimensional single-crystalline Cu2S nanostructures have been successfully prepared via a solution-based direct synthesis process within 10 min at room temperature without the need for thermal treatment steps. The fabricated electrode exhibits a capacitance of 750 mF cm−2 at a current density of 2 mA cm−2. Moreover, the rate capacitance is maintained at about 82.3% as the current density is increased to 40 mA cm−2, and the capacity retains 90.5% of the initial value after 20 000 cycles. Importantly, as this method involves a solution-based formulation it is compatible with roll-to-roll processes, which is promising for mass and scalable production of the electrodes. The synthetic method ensures a facile and efficient approach to fabricating scalable one-dimensional single crystalline Cu2S nanostructures, highlighting the uniqueness of the solution-based sulfur activation method.
first_indexed 2024-03-07T02:49:25Z
format Journal article
id oxford-uuid:ad273ce5-870d-4081-8b64-16250920acc3
institution University of Oxford
language English
last_indexed 2024-03-07T02:49:25Z
publishDate 2019
publisher Royal Society of Chemistry
record_format dspace
spelling oxford-uuid:ad273ce5-870d-4081-8b64-16250920acc32022-03-27T03:33:37ZChalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitorJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ad273ce5-870d-4081-8b64-16250920acc3EnglishSymplectic Elements at OxfordRoyal Society of Chemistry2019Hong, JKim, BYang, SJang, ALee, YPak, SLee, SCho, YKang, DShin, HHong, JMorris, SCha, SSohn, JKim, JTraditional synthetic routes for transition metal sulfides typically involve solution and thermal-based processes to exploit their favorable pseudo-capacitive properties. However, there is a practical need to develop alternative processes to fabricate metal sulfide electrodes because of the time-consuming processes (>12 h), additional heat-treatment to active reactants, relatively high post-heat-treatment temperature (200–400 °C) and non-scalable nature of existing synthetic routes. Herein, utilizing a solution-based sulfur precursor, one-dimensional single-crystalline Cu2S nanostructures have been successfully prepared via a solution-based direct synthesis process within 10 min at room temperature without the need for thermal treatment steps. The fabricated electrode exhibits a capacitance of 750 mF cm−2 at a current density of 2 mA cm−2. Moreover, the rate capacitance is maintained at about 82.3% as the current density is increased to 40 mA cm−2, and the capacity retains 90.5% of the initial value after 20 000 cycles. Importantly, as this method involves a solution-based formulation it is compatible with roll-to-roll processes, which is promising for mass and scalable production of the electrodes. The synthetic method ensures a facile and efficient approach to fabricating scalable one-dimensional single crystalline Cu2S nanostructures, highlighting the uniqueness of the solution-based sulfur activation method.
spellingShingle Hong, J
Kim, B
Yang, S
Jang, A
Lee, Y
Pak, S
Lee, S
Cho, Y
Kang, D
Shin, H
Hong, J
Morris, S
Cha, S
Sohn, J
Kim, J
Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title_full Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title_fullStr Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title_full_unstemmed Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title_short Chalcogenide solution-mediated activation protocol for scalable and ultrafast synthesis of single-crystalline 1-D copper sulfide for supercapacitor
title_sort chalcogenide solution mediated activation protocol for scalable and ultrafast synthesis of single crystalline 1 d copper sulfide for supercapacitor
work_keys_str_mv AT hongj chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT kimb chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT yangs chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT janga chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT leey chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT paks chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT lees chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT choy chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT kangd chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT shinh chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT hongj chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT morriss chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT chas chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT sohnj chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor
AT kimj chalcogenidesolutionmediatedactivationprotocolforscalableandultrafastsynthesisofsinglecrystalline1dcoppersulfideforsupercapacitor