T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging

Objectives This study sought to test the diagnostic performance of native T1 mapping in acute myocarditis compared with cardiac magnetic resonance (CMR) techniques such as dark-blood T2-weighted (T2W)-CMR, bright-blood T2W-CMR, and late gadolinium enhancement (LGE) imaging. Background The diagnosis...

Full description

Bibliographic Details
Main Authors: Ferreira, V, Piechnik, S, Dall'Armellina, E, Karamitsos, T, Francis, J, Ntusi, N, Holloway, C, Choudhury, R, Kardos, A, Robson, M, Friedrich, MG, Neubauer, S
Format: Journal article
Language:English
Published: 2013
_version_ 1826290933467971584
author Ferreira, V
Piechnik, S
Dall'Armellina, E
Karamitsos, T
Francis, J
Ntusi, N
Holloway, C
Choudhury, R
Kardos, A
Robson, M
Friedrich, MG
Neubauer, S
author_facet Ferreira, V
Piechnik, S
Dall'Armellina, E
Karamitsos, T
Francis, J
Ntusi, N
Holloway, C
Choudhury, R
Kardos, A
Robson, M
Friedrich, MG
Neubauer, S
author_sort Ferreira, V
collection OXFORD
description Objectives This study sought to test the diagnostic performance of native T1 mapping in acute myocarditis compared with cardiac magnetic resonance (CMR) techniques such as dark-blood T2-weighted (T2W)-CMR, bright-blood T2W-CMR, and late gadolinium enhancement (LGE) imaging. Background The diagnosis of acute myocarditis on CMR often requires multiple techniques, including T2W, early gadolinium enhancement, and LGE imaging. Novel techniques such as T1 mapping and bright-blood T2W-CMR are also sensitive to changes in free water content. We hypothesized that these techniques can serve as new and potentially superior diagnostic criteria for myocarditis. Methods We investigated 50 patients with suspected acute myocarditis (age 42 ± 16 years; 22% women) and 45 controls (age 42 ± 14 years; 22% women). CMR at 1.5-T (median 3 days from presentation) included: 1) dark-blood T2W-CMR (short-tau inversion recovery); 2) bright-blood T2W-CMR (acquisition for cardiac unified T2 edema); 3) native T1 mapping (shortened modified look-locker inversion recovery); and 4) LGE. Image analysis included: 1) global T2 signal intensity ratio of myocardium compared with skeletal muscle; 2) myocardial T1 relaxation times; and 3) areas of LGE. Results Compared with controls, patients had significantly higher global T2 signal intensity ratios by dark-blood T2W-CMR (1.73 ± 0.27 vs. 1.56 ± 0.15, p < 0.01), bright-blood T2W-CMR (2.02 ± 0.33 vs. 1.84 ± 0.17, p < 0.01), and mean myocardial T1 (1,010 ± 65 ms vs. 941 ± 18 ms, p < 0.01). Receiver-operating characteristic analysis showed clear differences in diagnostic performance. The areas under the curve for each method were: T1 mapping (0.95), LGE (0.96), dark-blood T2 (0.78), and bright-blood T2 (0.76). A T1 cutoff of 990 ms had a sensitivity, specificity, and diagnostic accuracy of 90%, 91%, and 91%, respectively. Conclusions Native T1 mapping as a novel criterion for the detection of acute myocarditis showed excellent and superior diagnostic performance compared with T2W-CMR. It also has a higher sensitivity compared with T2W and LGE techniques, which may be especially useful in detecting subtle focal disease and when gadolinium contrast imaging is not feasible. © 2013 by the American College of Cardiology Foundation.
first_indexed 2024-03-07T02:51:46Z
format Journal article
id oxford-uuid:aded2aeb-a7d9-4f84-a82f-2f161c3bb776
institution University of Oxford
language English
last_indexed 2024-03-07T02:51:46Z
publishDate 2013
record_format dspace
spelling oxford-uuid:aded2aeb-a7d9-4f84-a82f-2f161c3bb7762022-03-27T03:39:09ZT1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imagingJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:aded2aeb-a7d9-4f84-a82f-2f161c3bb776EnglishSymplectic Elements at Oxford2013Ferreira, VPiechnik, SDall'Armellina, EKaramitsos, TFrancis, JNtusi, NHolloway, CChoudhury, RKardos, ARobson, MFriedrich, MGNeubauer, SObjectives This study sought to test the diagnostic performance of native T1 mapping in acute myocarditis compared with cardiac magnetic resonance (CMR) techniques such as dark-blood T2-weighted (T2W)-CMR, bright-blood T2W-CMR, and late gadolinium enhancement (LGE) imaging. Background The diagnosis of acute myocarditis on CMR often requires multiple techniques, including T2W, early gadolinium enhancement, and LGE imaging. Novel techniques such as T1 mapping and bright-blood T2W-CMR are also sensitive to changes in free water content. We hypothesized that these techniques can serve as new and potentially superior diagnostic criteria for myocarditis. Methods We investigated 50 patients with suspected acute myocarditis (age 42 ± 16 years; 22% women) and 45 controls (age 42 ± 14 years; 22% women). CMR at 1.5-T (median 3 days from presentation) included: 1) dark-blood T2W-CMR (short-tau inversion recovery); 2) bright-blood T2W-CMR (acquisition for cardiac unified T2 edema); 3) native T1 mapping (shortened modified look-locker inversion recovery); and 4) LGE. Image analysis included: 1) global T2 signal intensity ratio of myocardium compared with skeletal muscle; 2) myocardial T1 relaxation times; and 3) areas of LGE. Results Compared with controls, patients had significantly higher global T2 signal intensity ratios by dark-blood T2W-CMR (1.73 ± 0.27 vs. 1.56 ± 0.15, p < 0.01), bright-blood T2W-CMR (2.02 ± 0.33 vs. 1.84 ± 0.17, p < 0.01), and mean myocardial T1 (1,010 ± 65 ms vs. 941 ± 18 ms, p < 0.01). Receiver-operating characteristic analysis showed clear differences in diagnostic performance. The areas under the curve for each method were: T1 mapping (0.95), LGE (0.96), dark-blood T2 (0.78), and bright-blood T2 (0.76). A T1 cutoff of 990 ms had a sensitivity, specificity, and diagnostic accuracy of 90%, 91%, and 91%, respectively. Conclusions Native T1 mapping as a novel criterion for the detection of acute myocarditis showed excellent and superior diagnostic performance compared with T2W-CMR. It also has a higher sensitivity compared with T2W and LGE techniques, which may be especially useful in detecting subtle focal disease and when gadolinium contrast imaging is not feasible. © 2013 by the American College of Cardiology Foundation.
spellingShingle Ferreira, V
Piechnik, S
Dall'Armellina, E
Karamitsos, T
Francis, J
Ntusi, N
Holloway, C
Choudhury, R
Kardos, A
Robson, M
Friedrich, MG
Neubauer, S
T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title_full T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title_fullStr T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title_full_unstemmed T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title_short T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging
title_sort t1 mapping for the diagnosis of acute myocarditis using cmr comparison to t2 weighted and late gadolinium enhanced imaging
work_keys_str_mv AT ferreirav t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT piechniks t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT dallarmellinae t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT karamitsost t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT francisj t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT ntusin t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT hollowayc t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT choudhuryr t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT kardosa t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT robsonm t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT friedrichmg t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging
AT neubauers t1mappingforthediagnosisofacutemyocarditisusingcmrcomparisontot2weightedandlategadoliniumenhancedimaging