Discrete representations of continuous data using deep learning and clustering
<p>The divide between continuous and discrete data is a fundamental one in computer science and mathematics, as well as related areas such as cognitive science. Historically, most of computing has operated in the discrete domain, but connectionism offers an alternative set of techniques for re...
Hovedforfatter: | Mahon, L |
---|---|
Andre forfattere: | Lukasiewicz, T |
Format: | Thesis |
Sprog: | English |
Udgivet: |
2022
|
Fag: |
Lignende værker
-
Influence of the input data on learning deep representations
af: Sylvestre-Alvise Rebuffi
Udgivet: (2020) -
DEEP LEARNING /
af: Kelleher, John D., author 637754
Udgivet: (2019) -
Continual learning for efficient machine learning
af: Chaudhry, A
Udgivet: (2020) -
Machine learning and deep learning methods that use omics data for metastasis prediction
af: Somayah Albaradei, et al.
Udgivet: (2021-01-01) -
Learning Distributed Representations and Deep Embedded Clustering of Texts
af: Shuang Wang, et al.
Udgivet: (2023-03-01)