Proof of Komlós's conjecture on Hamiltonian subsets
Komlós conjectured in 1981 that among all graphs with minimum degree at least d, the complete graph K d+1 minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when d is sufficiently large. In fact we prove a...
المؤلفون الرئيسيون: | Kim, J, Liu, H, Sharifzadeh, M, Staden, K |
---|---|
التنسيق: | Journal article |
منشور في: |
London Mathematical Society
2017
|
مواد مشابهة
-
A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables
حسب: Abdessamad Dehaj, وآخرون
منشور في: (2020-09-01) -
On the Komlós–Révész SLLN for Ψ-Mixing Sequences
حسب: Zbigniew S. Szewczak
منشور في: (2025-01-01) -
A new sufficient condition for a Digraph to be Hamiltonian-A proof of Manoussakis Conjecture
حسب: Samvel Kh. Darbinyan
منشور في: (2021-01-01) -
Analysis about the Concept of Taste's Formators. An Interpretation of Komlos' Vision
حسب: MIHAELA IOANA GURĂU
منشور في: (2021-12-01) -
Conjecture and proof /
حسب: 181611 Laczkovich, Miklos
منشور في: (2001)