Proof of Komlós's conjecture on Hamiltonian subsets
Komlós conjectured in 1981 that among all graphs with minimum degree at least d, the complete graph K d+1 minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when d is sufficiently large. In fact we prove a...
Auteurs principaux: | Kim, J, Liu, H, Sharifzadeh, M, Staden, K |
---|---|
Format: | Journal article |
Publié: |
London Mathematical Society
2017
|
Documents similaires
-
A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables
par: Abdessamad Dehaj, et autres
Publié: (2020-09-01) -
On the Komlós–Révész SLLN for Ψ-Mixing Sequences
par: Zbigniew S. Szewczak
Publié: (2025-01-01) -
A new sufficient condition for a Digraph to be Hamiltonian-A proof of Manoussakis Conjecture
par: Samvel Kh. Darbinyan
Publié: (2021-01-01) -
Analysis about the Concept of Taste's Formators. An Interpretation of Komlos' Vision
par: MIHAELA IOANA GURĂU
Publié: (2021-12-01) -
Conjecture and proof /
par: 181611 Laczkovich, Miklos
Publié: (2001)