Homogenization of random quasiconformal mappings and random delauney triangulations

In this paper, we solve two problems dealing with the homogenization of random media. We show that a random quasiconformal mapping is close to an affine mapping, while a circle packing of a random Delauney triangulation is close to a conformal map, confirming a conjecture of K. Stephenson. We also s...

Full description

Bibliographic Details
Main Authors: Ivrii, O, Markovic, V
Format: Journal article
Language:English
Published: International Press 2023
_version_ 1797112839229407232
author Ivrii, O
Markovic, V
author_facet Ivrii, O
Markovic, V
author_sort Ivrii, O
collection OXFORD
description In this paper, we solve two problems dealing with the homogenization of random media. We show that a random quasiconformal mapping is close to an affine mapping, while a circle packing of a random Delauney triangulation is close to a conformal map, confirming a conjecture of K. Stephenson. We also show that on a Riemann surface equipped with a conformal metric, a random Delauney triangulation is close to being circle packed.
first_indexed 2024-03-07T08:13:00Z
format Journal article
id oxford-uuid:ae943f7a-b7cf-4bda-a819-36022ec879e8
institution University of Oxford
language English
last_indexed 2024-04-09T03:55:09Z
publishDate 2023
publisher International Press
record_format dspace
spelling oxford-uuid:ae943f7a-b7cf-4bda-a819-36022ec879e82024-03-07T14:22:43ZHomogenization of random quasiconformal mappings and random delauney triangulationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ae943f7a-b7cf-4bda-a819-36022ec879e8EnglishSymplectic ElementsInternational Press2023Ivrii, OMarkovic, VIn this paper, we solve two problems dealing with the homogenization of random media. We show that a random quasiconformal mapping is close to an affine mapping, while a circle packing of a random Delauney triangulation is close to a conformal map, confirming a conjecture of K. Stephenson. We also show that on a Riemann surface equipped with a conformal metric, a random Delauney triangulation is close to being circle packed.
spellingShingle Ivrii, O
Markovic, V
Homogenization of random quasiconformal mappings and random delauney triangulations
title Homogenization of random quasiconformal mappings and random delauney triangulations
title_full Homogenization of random quasiconformal mappings and random delauney triangulations
title_fullStr Homogenization of random quasiconformal mappings and random delauney triangulations
title_full_unstemmed Homogenization of random quasiconformal mappings and random delauney triangulations
title_short Homogenization of random quasiconformal mappings and random delauney triangulations
title_sort homogenization of random quasiconformal mappings and random delauney triangulations
work_keys_str_mv AT ivriio homogenizationofrandomquasiconformalmappingsandrandomdelauneytriangulations
AT markovicv homogenizationofrandomquasiconformalmappingsandrandomdelauneytriangulations