On neural differential equations
<p>The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a s...
Hlavní autor: | Kidger, P |
---|---|
Další autoři: | Lyons, T |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2021
|
Témata: |
Podobné jednotky
-
Learning nonlinear integral operators via recurrent neural networks and its application in solving integro-differential equations
Autor: Hardeep Bassi, a další
Vydáno: (2024-03-01) -
Stochastic ordinary and stochastic partial differential equations : transition from microscopic to macroscopic equations /
Autor: 272186 Kotelenez, Peter
Vydáno: (2008) -
Stochastic stability of differential equations : translated by D. Louvish /
Autor: Has'minskii, R. Z., a další
Vydáno: (1980) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
Autor: Norhayati Rosli, 1981-
Vydáno: (2012) -
Stochastic Runge-Kutta method for stochastic delay differential equations /
Autor: Norhayati Rosli, 1981-, a další
Vydáno: (2012)