Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers
<p>Aims: Ventricular arrhythmia triggers sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM), yet electrophysiological biomarkers are not used for risk stratification. Our aim was to identify distinct HCM phenotypes based on ECG computational analysis, and characterize differences...
Auteurs principaux: | Lyon, A, Ariga, R, Minchole, A, Mahmod, M, Ormondroyd, E, Laguna, P, de Freitas, N, Neubauer, S, Watkins, H, Rodriguez, B |
---|---|
Format: | Journal article |
Publié: |
Frontiers Media
2018
|
Documents similaires
-
Risk stratification in hypertrophic cardiomyopathy based on QRS and
T wave morphological biomarkers identifies three phenotypic
subgroups
par: Lyon, A, et autres
Publié: (2016) -
The arrhythmic substrate of hypertrophic cardiomyopathy using ECG imaging
par: Chow, J, et autres
Publié: (2024) -
The arrhythmic substrate of hypertrophic cardiomyopathy using ECG imaging
par: Ji-Jian Chow, et autres
Publié: (2024-08-01) -
Electrocardiogram phenotypes in hypertrophic cardiomyopathy caused by distinct mechanisms: apico-basal repolarization gradients vs. Purkinje-myocardial coupling abnormalities
par: Lyon, A, et autres
Publié: (2018) -
Extraction of morphological QRS-based biomarkers in hypertrophic cardiomyopathy for risk stratification using L1 regularized logistic regression
par: Lyon, A, et autres
Publié: (2016)