Summary: | <p>Understanding the transmission dynamics of infectious diseases is important to well-informed public health policy, responsive infection control and individual patient management. The on-going revolution in whole-genome sequencing provides unprecedented resolution for detecting evidence of recent transmission and characterising population-level transmission dynamics. In this thesis, I develop and apply evolutionary approaches to investigating transmission, focusing on three globally important pathogens.</p> <p>Hepatitis C virus (HCV) is a major cause of liver disease affecting 150 million people and killing 350,000 annually. I conducted a meta-analysis of twentieth-century HCV epidemics, finding that the age of the epidemic can be predicted by genetic diversity. Using the coalescent, I fitted classic susceptible-infected (SI), susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) epidemiological models. Most epidemics showed signatures of SI dynamics, but three, from Argentina, Hong Kong and Thailand, revealed complex SIR dynamics.</p> <p>Norovirus is the leading viral cause of diarrhoea, estimated to cost the NHS around £115 million annually. I analysed whole norovirus genomes via a stochastic transmission model, finding that up to 86% of hospital infection was attributable to transmission from another patient in the hospital. In contrast, the rate of new introductions to hospital by infected patients was extremely low (<0.0001%), underlining the importance of ward management during outbreaks.</p> <p><em>Campylobacter</em> is the most commonly identified cause of bacterial gastroenteritis worldwide. I developed a zoonotic transmission model based on phylogeography approaches to test whether three strains previously associated with multiple host species were in fact aggregates of strongly host-restricted sub-strains, or genuine generalists. Members of the same strain isolated from different host species were often more closely related than those isolated from the same host species. I estimated 419, 389 and 31 zoonotic transmissions in ST-21, ST-45 and ST-828 respectively, strongly supporting the hypothesis that these strains are adapted to a generalist lifestyle.</p>
|