Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers

This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm−2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8...

Full description

Bibliographic Details
Main Authors: Zhang, Q, Liu, J, Wei, Q, Guo, X, Xu, Y, Xia, R, Xie, L, Qian, Y, Sun, C, Lüer, L, Cabanillas-Gonzalez, J, Bradley, D, Huang, W
Format: Journal article
Published: Wiley‐VCH Verlag 2018
_version_ 1797088920486281216
author Zhang, Q
Liu, J
Wei, Q
Guo, X
Xu, Y
Xia, R
Xie, L
Qian, Y
Sun, C
Lüer, L
Cabanillas-Gonzalez, J
Bradley, D
Huang, W
author_facet Zhang, Q
Liu, J
Wei, Q
Guo, X
Xu, Y
Xia, R
Xie, L
Qian, Y
Sun, C
Lüer, L
Cabanillas-Gonzalez, J
Bradley, D
Huang, W
author_sort Zhang, Q
collection OXFORD
description This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm−2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm−1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm−2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.
first_indexed 2024-03-07T02:57:01Z
format Journal article
id oxford-uuid:afa938dd-c73b-4811-af71-ba44184179b9
institution University of Oxford
last_indexed 2024-03-07T02:57:01Z
publishDate 2018
publisher Wiley‐VCH Verlag
record_format dspace
spelling oxford-uuid:afa938dd-c73b-4811-af71-ba44184179b92022-03-27T03:51:05ZHost exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasersJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:afa938dd-c73b-4811-af71-ba44184179b9Symplectic Elements at OxfordWiley‐VCH Verlag2018Zhang, QLiu, JWei, QGuo, XXu, YXia, RXie, LQian, YSun, CLüer, LCabanillas-Gonzalez, JBradley, DHuang, WThis paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm−2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm−1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm−2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.
spellingShingle Zhang, Q
Liu, J
Wei, Q
Guo, X
Xu, Y
Xia, R
Xie, L
Qian, Y
Sun, C
Lüer, L
Cabanillas-Gonzalez, J
Bradley, D
Huang, W
Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title_full Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title_fullStr Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title_full_unstemmed Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title_short Host exciton confinement for enhanced Förster‐transfer‐blend gain media yielding highly efficient yellow‐green lasers
title_sort host exciton confinement for enhanced forster transfer blend gain media yielding highly efficient yellow green lasers
work_keys_str_mv AT zhangq hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT liuj hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT weiq hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT guox hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT xuy hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT xiar hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT xiel hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT qiany hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT sunc hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT luerl hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT cabanillasgonzalezj hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT bradleyd hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers
AT huangw hostexcitonconfinementforenhancedforstertransferblendgainmediayieldinghighlyefficientyellowgreenlasers