Untangling the complexity of multimorbidity with machine learning
The prevalence of multimorbidity has been increasing in recent years, posing a major burden for health care delivery and service. Understanding its determinants and impact is proving to be a challenge yet it offers new opportunities for research to go beyond the study of diseases in isolation. In th...
मुख्य लेखकों: | Hassaine, A, Salimi-Khorshidi, G, Canoy, D, Rahimi, K |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
Elsevier
2020
|
समान संसाधन
-
Learning multimorbidity patterns from electronic health records using Non-negative Matrix Factorisation
द्वारा: Hassaine, A, और अन्य
प्रकाशित: (2020) -
Association between cardiometabolic disease multimorbidity and all-cause mortality in 2 million women and men registered in UK general practices
द्वारा: Canoy, D, और अन्य
प्रकाशित: (2021) -
Association between cardiometabolic disease multimorbidity and all-cause mortality in 2 million women and men registered in UK general practices
द्वारा: Dexter Canoy, और अन्य
प्रकाशित: (2021-10-01) -
Targeted-BEHRT: deep learning for observational causal inference on longitudinal electronic health records
द्वारा: Rao, S, और अन्य
प्रकाशित: (2022) -
An explainable transformer-based deep learning model for the prediction of incident heart failure
द्वारा: Rao, S, और अन्य
प्रकाशित: (2022)