Heat transfer measurements on an intermediate-pressure nozzle guide vane tested in a rotating annular turbine facility, and the modifying effects of a non-uniform inlet temperature profile

In modern gas turbine engines there exist significant temperature gradients in the combustor exit flow. These gradients arise because both fuel and dilution air are introduced within the combustor as discrete jets. The effects of this non-uniform temperature field on the aerodynamics and heat transf...

Full description

Bibliographic Details
Main Authors: Povey, T, Chana, K, Jones, T
Format: Conference item
Published: 2003
Description
Summary:In modern gas turbine engines there exist significant temperature gradients in the combustor exit flow. These gradients arise because both fuel and dilution air are introduced within the combustor as discrete jets. The effects of this non-uniform temperature field on the aerodynamics and heat transfer rate distributions of nozzle guide vanes and turbine blades is difficult to predict, although an increased understanding of the effects of temperature gradients would enhance the accuracy of estimates of turbine component life and efficiency. Low-frequency measurements of heat transfer rate have been conducted on an annular transonic intermediate-pressure (IP) nozzle guide vane operating downstream of a high-pressure (HP) rotating turbine stage. Measurements were conducted with both uniform and non-uniform inlet temperature profiles. The non-uniform temperature profile included both radial and circumferential gradients of temperature. Experiments were conducted in the isentropic light piston facility at QinetiQ Pyestock, a short-duration engine-size turbine facility with 1.5 turbine stages, in which Mach number, Reynolds number and gas-wall temperature ratios are correctly modelled. Experimental heat transfer results are compared with predictions performed using boundary layer methods.