A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs

We develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite-element methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent)...

Full description

Bibliographic Details
Main Authors: Houston, P, Suli, E, Wihler, T
Format: Journal article
Language:English
Published: 2008
_version_ 1797089132126666752
author Houston, P
Suli, E
Wihler, T
author_facet Houston, P
Suli, E
Wihler, T
author_sort Houston, P
collection OXFORD
description We develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite-element methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent) energy norm. The bounds are explicit in the local mesh size and the local polynomial degree of the approximating finite element function. The performance of the proposed error indicators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
first_indexed 2024-03-07T03:00:02Z
format Journal article
id oxford-uuid:b0a5c0a5-0c34-42a2-8315-e34ade0dcc2a
institution University of Oxford
language English
last_indexed 2024-03-07T03:00:02Z
publishDate 2008
record_format dspace
spelling oxford-uuid:b0a5c0a5-0c34-42a2-8315-e34ade0dcc2a2022-03-27T03:57:58ZA posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b0a5c0a5-0c34-42a2-8315-e34ade0dcc2aEnglishSymplectic Elements at Oxford2008Houston, PSuli, EWihler, TWe develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite-element methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent) energy norm. The bounds are explicit in the local mesh size and the local polynomial degree of the approximating finite element function. The performance of the proposed error indicators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
spellingShingle Houston, P
Suli, E
Wihler, T
A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title_full A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title_fullStr A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title_full_unstemmed A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title_short A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs
title_sort posteriori error analysis of hp version discontinuous galerkin finite element methods for second order quasi linear elliptic pdes
work_keys_str_mv AT houstonp aposteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes
AT sulie aposteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes
AT wihlert aposteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes
AT houstonp posteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes
AT sulie posteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes
AT wihlert posteriorierroranalysisofhpversiondiscontinuousgalerkinfiniteelementmethodsforsecondorderquasilinearellipticpdes