Causal inference methods for supporting, understanding, and improving decision-making
<p>Causality and the ability to reason about cause-and-effect relationships are central to decision-making. This thesis contributes to the area of causal inference by proposing new machine learning methods that can be used for supporting, understanding, and improving decision-making, with a fo...
Автор: | Bica, I |
---|---|
Інші автори: | van der Schaar, M |
Формат: | Дисертація |
Мова: | English |
Опубліковано: |
2022
|
Предмети: |
Схожі ресурси
Схожі ресурси
-
Interpretable causal systems: interpretability and causality in machine learning for human and nonhuman decision-making
за авторством: Graham, L
Опубліковано: (2020) -
Large scale methods for kernels, causal inference and survival modelling
за авторством: Hu, R
Опубліковано: (2022) -
Causal ML: Python package for causal inference machine learning
за авторством: Yang Zhao, та інші
Опубліковано: (2023-02-01) -
Deep learning for causal inference on electronic health records
за авторством: Rao, S
Опубліковано: (2023) -
Causal evidence in health decision making: methodological approaches of causal inference and health decision science
за авторством: Kühne, Felicitas, та інші
Опубліковано: (2022-12-01)