Causal inference methods for supporting, understanding, and improving decision-making
<p>Causality and the ability to reason about cause-and-effect relationships are central to decision-making. This thesis contributes to the area of causal inference by proposing new machine learning methods that can be used for supporting, understanding, and improving decision-making, with a fo...
Κύριος συγγραφέας: | Bica, I |
---|---|
Άλλοι συγγραφείς: | van der Schaar, M |
Μορφή: | Thesis |
Γλώσσα: | English |
Έκδοση: |
2022
|
Θέματα: |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Interpretable causal systems: interpretability and causality in machine learning for human and nonhuman decision-making
ανά: Graham, L
Έκδοση: (2020) -
Large scale methods for kernels, causal inference and survival modelling
ανά: Hu, R
Έκδοση: (2022) -
Causal ML: Python package for causal inference machine learning
ανά: Yang Zhao, κ.ά.
Έκδοση: (2023-02-01) -
Deep learning for causal inference on electronic health records
ανά: Rao, S
Έκδοση: (2023) -
Causal evidence in health decision making: methodological approaches of causal inference and health decision science
ανά: Kühne, Felicitas, κ.ά.
Έκδοση: (2022-12-01)