Causal inference methods for supporting, understanding, and improving decision-making
<p>Causality and the ability to reason about cause-and-effect relationships are central to decision-making. This thesis contributes to the area of causal inference by proposing new machine learning methods that can be used for supporting, understanding, and improving decision-making, with a fo...
Autore principale: | Bica, I |
---|---|
Altri autori: | van der Schaar, M |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
2022
|
Soggetti: |
Documenti analoghi
Documenti analoghi
-
Interpretable causal systems: interpretability and causality in machine learning for human and nonhuman decision-making
di: Graham, L
Pubblicazione: (2020) -
Large scale methods for kernels, causal inference and survival modelling
di: Hu, R
Pubblicazione: (2022) -
Causal ML: Python package for causal inference machine learning
di: Yang Zhao, et al.
Pubblicazione: (2023-02-01) -
Deep learning for causal inference on electronic health records
di: Rao, S
Pubblicazione: (2023) -
Causal evidence in health decision making: methodological approaches of causal inference and health decision science
di: Kühne, Felicitas, et al.
Pubblicazione: (2022-12-01)