Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
第一著者: | Law, H |
---|---|
その他の著者: | Sejdinovic, D |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2019
|
主題: |
類似資料
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
著者:: Hozan Khalid Hamarashid
出版事項: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
著者:: Natália V N Rodrigues, 等
出版事項: (2023-01-01) -
Towards trustworthy machine learning with kernels
著者:: Chau, SL
出版事項: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
著者:: Xu, J
出版事項: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
著者:: Zhang, Q
出版事項: (2019)