Testing and learning on distributional and set inputs
<p>As machine learning gains significant attention in many disciplines and research communities, the variety of data structures has increased, with examples including distributions and sets of observations. In this thesis, we consider sets and distributions as inputs for machine learning pr...
Hlavní autor: | Law, H |
---|---|
Další autoři: | Sejdinovic, D |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2019
|
Témata: |
Podobné jednotky
-
Utilizing Statistical Tests for Comparing Machine Learning Algorithms
Autor: Hozan Khalid Hamarashid
Vydáno: (2021-07-01) -
The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
Autor: Natália V N Rodrigues, a další
Vydáno: (2023-01-01) -
Towards trustworthy machine learning with kernels
Autor: Chau, SL
Vydáno: (2023) -
Towards data-efficient deep learning with meta-learning and symmetries
Autor: Xu, J
Vydáno: (2023) -
Kernel-based hypothesis tests: large-scale approximations and Bayesian perspectives
Autor: Zhang, Q
Vydáno: (2019)