The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.

The structure of a homopentameric alpha7 nicotinic acetylcholine receptor is modelled by combining structural information from two sources: the X-ray structure of a water soluble acetylcholine binding protein from Lymnea stagnalis, and the electron microscopy derived structure of the transmembrane d...

Full description

Bibliographic Details
Main Authors: Amiri, S, Tai, K, Beckstein, O, Biggin, P, Sansom, MS
Format: Journal article
Language:English
Published: 2005
_version_ 1826291505465131008
author Amiri, S
Tai, K
Beckstein, O
Biggin, P
Sansom, MS
author_facet Amiri, S
Tai, K
Beckstein, O
Biggin, P
Sansom, MS
author_sort Amiri, S
collection OXFORD
description The structure of a homopentameric alpha7 nicotinic acetylcholine receptor is modelled by combining structural information from two sources: the X-ray structure of a water soluble acetylcholine binding protein from Lymnea stagnalis, and the electron microscopy derived structure of the transmembrane domain of the Torpedo nicotinic receptor. The alpha7 nicotinic receptor model is generated by simultaneously optimising: (i) chain connectivity, (ii) avoidance of stereochemically unfavourable contacts, and (iii) contact between the beta1-beta2 and M2-M3 loops that have been suggested to be involved in transmission of conformational change between the extracellular and transmembrane domains. A Gaussian network model was used to predict patterns of residue mobility in the alpha7 model. The results of these calculations suggested a flexibility gradient along the transmembrane domain, with the extracellular end of the domain more flexible that the intracellular end. Poisson-Boltzmann (PB) energy calculations and atomistic (molecular dynamics) simulations were used to estimate the free energy profile of a Na+ ion as a function of position along the axis of the pore-lining M2 helix bundle of the transmembrane domain. Both types of calculation suggested a significant energy barrier to exist in the centre of the (closed) pore, consistent with a "hydrophobic gating" model. Estimations of the PB energy profile as a function of ionic strength suggest a role of the extracellular domain in determining the cation selectivity of the alpha7 nicotinic receptor. These studies illustrate how molecular models of members of the nicotinic receptor superfamily of channels may be used to study structure-function relationships.
first_indexed 2024-03-07T03:00:23Z
format Journal article
id oxford-uuid:b0c4b7c6-ad50-45ce-b64a-196b41ad354b
institution University of Oxford
language English
last_indexed 2024-03-07T03:00:23Z
publishDate 2005
record_format dspace
spelling oxford-uuid:b0c4b7c6-ad50-45ce-b64a-196b41ad354b2022-03-27T03:58:51ZThe alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b0c4b7c6-ad50-45ce-b64a-196b41ad354bEnglishSymplectic Elements at Oxford2005Amiri, STai, KBeckstein, OBiggin, PSansom, MSThe structure of a homopentameric alpha7 nicotinic acetylcholine receptor is modelled by combining structural information from two sources: the X-ray structure of a water soluble acetylcholine binding protein from Lymnea stagnalis, and the electron microscopy derived structure of the transmembrane domain of the Torpedo nicotinic receptor. The alpha7 nicotinic receptor model is generated by simultaneously optimising: (i) chain connectivity, (ii) avoidance of stereochemically unfavourable contacts, and (iii) contact between the beta1-beta2 and M2-M3 loops that have been suggested to be involved in transmission of conformational change between the extracellular and transmembrane domains. A Gaussian network model was used to predict patterns of residue mobility in the alpha7 model. The results of these calculations suggested a flexibility gradient along the transmembrane domain, with the extracellular end of the domain more flexible that the intracellular end. Poisson-Boltzmann (PB) energy calculations and atomistic (molecular dynamics) simulations were used to estimate the free energy profile of a Na+ ion as a function of position along the axis of the pore-lining M2 helix bundle of the transmembrane domain. Both types of calculation suggested a significant energy barrier to exist in the centre of the (closed) pore, consistent with a "hydrophobic gating" model. Estimations of the PB energy profile as a function of ionic strength suggest a role of the extracellular domain in determining the cation selectivity of the alpha7 nicotinic receptor. These studies illustrate how molecular models of members of the nicotinic receptor superfamily of channels may be used to study structure-function relationships.
spellingShingle Amiri, S
Tai, K
Beckstein, O
Biggin, P
Sansom, MS
The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title_full The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title_fullStr The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title_full_unstemmed The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title_short The alpha7 nicotinic acetylcholine receptor: molecular modelling, electrostatics, and energetics.
title_sort alpha7 nicotinic acetylcholine receptor molecular modelling electrostatics and energetics
work_keys_str_mv AT amiris thealpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT taik thealpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT becksteino thealpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT bigginp thealpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT sansomms thealpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT amiris alpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT taik alpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT becksteino alpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT bigginp alpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics
AT sansomms alpha7nicotinicacetylcholinereceptormolecularmodellingelectrostaticsandenergetics