Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study.
Density functional theory (DFT) calculations have been performed on the terminal dihalogallyl complexes of iron, ruthenium, and osmium (η(5)-C(5)H(5))(Me(3)P)(2)M(GaX(2)) (M = Fe, Ru, Os; X = Cl, Br, I) and (η(5)-C(5)H(5))(OC)(2)Fe(GaX(2)) (X = Cl, Br, I) at the BP86/TZ2P/ZORA level of theory. On th...
Главные авторы: | , , |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2010
|
_version_ | 1826291547030683648 |
---|---|
author | Pandey, K Patidar, P Aldridge, S |
author_facet | Pandey, K Patidar, P Aldridge, S |
author_sort | Pandey, K |
collection | OXFORD |
description | Density functional theory (DFT) calculations have been performed on the terminal dihalogallyl complexes of iron, ruthenium, and osmium (η(5)-C(5)H(5))(Me(3)P)(2)M(GaX(2)) (M = Fe, Ru, Os; X = Cl, Br, I) and (η(5)-C(5)H(5))(OC)(2)Fe(GaX(2)) (X = Cl, Br, I) at the BP86/TZ2P/ZORA level of theory. On the basis of analyses suggested by Pauling, the M-Ga bonds in all of the dihalogallyl complexes are shorter than M-Ga single bonds; moreover, on going from X = Cl to X = I, the optimized M-Ga bond distances are found to increase. From the perspective of covalent bonding, however, π-symmetry contributions are, in all complexes, significantly smaller than the corresponding σ-bonding contribution, representing only 4-10% of the total orbital interaction. Thus, in these GaX(2) complexes, the gallyl ligand behaves predominantly as a σ donor, and the short M-Ga bond lengths can be attributed to high gallium s-orbital character in the M-Ga σ-bonding orbitals. The natural population analysis (NPA) charge distributions indicate that the group 8 metal atom carries a negative charge (from -1.38 to -1.62) and the gallium atom carries a significant positive charge in all cases (from +0.76 to +1.18). Moreover, the contributions of the electrostatic interaction terms (ΔE(elstat)) are significantly larger in all gallyl complexes than the covalent bonding term (ΔE(orb)); thus, the M-Ga bonds have predominantly ionic character (60-72%). The magnitude of the charge separation is greatest for dichlorogallyl complexes (compared to the corresponding GaBr(2) and GaI(2) systems), leading to a larger attractive ΔE(elstat) term and to M-Ga bonds that are stronger and marginally shorter than in the dibromo and diiodo analogues. |
first_indexed | 2024-03-07T03:01:01Z |
format | Journal article |
id | oxford-uuid:b0f7a1d3-3f6e-4d09-b43d-7a4adced261f |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T03:01:01Z |
publishDate | 2010 |
record_format | dspace |
spelling | oxford-uuid:b0f7a1d3-3f6e-4d09-b43d-7a4adced261f2022-03-27T04:00:20ZNature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b0f7a1d3-3f6e-4d09-b43d-7a4adced261fEnglishSymplectic Elements at Oxford2010Pandey, KPatidar, PAldridge, SDensity functional theory (DFT) calculations have been performed on the terminal dihalogallyl complexes of iron, ruthenium, and osmium (η(5)-C(5)H(5))(Me(3)P)(2)M(GaX(2)) (M = Fe, Ru, Os; X = Cl, Br, I) and (η(5)-C(5)H(5))(OC)(2)Fe(GaX(2)) (X = Cl, Br, I) at the BP86/TZ2P/ZORA level of theory. On the basis of analyses suggested by Pauling, the M-Ga bonds in all of the dihalogallyl complexes are shorter than M-Ga single bonds; moreover, on going from X = Cl to X = I, the optimized M-Ga bond distances are found to increase. From the perspective of covalent bonding, however, π-symmetry contributions are, in all complexes, significantly smaller than the corresponding σ-bonding contribution, representing only 4-10% of the total orbital interaction. Thus, in these GaX(2) complexes, the gallyl ligand behaves predominantly as a σ donor, and the short M-Ga bond lengths can be attributed to high gallium s-orbital character in the M-Ga σ-bonding orbitals. The natural population analysis (NPA) charge distributions indicate that the group 8 metal atom carries a negative charge (from -1.38 to -1.62) and the gallium atom carries a significant positive charge in all cases (from +0.76 to +1.18). Moreover, the contributions of the electrostatic interaction terms (ΔE(elstat)) are significantly larger in all gallyl complexes than the covalent bonding term (ΔE(orb)); thus, the M-Ga bonds have predominantly ionic character (60-72%). The magnitude of the charge separation is greatest for dichlorogallyl complexes (compared to the corresponding GaBr(2) and GaI(2) systems), leading to a larger attractive ΔE(elstat) term and to M-Ga bonds that are stronger and marginally shorter than in the dibromo and diiodo analogues. |
spellingShingle | Pandey, K Patidar, P Aldridge, S Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title | Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title_full | Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title_fullStr | Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title_full_unstemmed | Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title_short | Nature of M-Ga bonds in dihalogallyl complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): a DFT study. |
title_sort | nature of m ga bonds in dihalogallyl complexes η5 c5h5 me3p 2m gax2 m fe ru os and η5 c5h5 oc 2fe gax2 x cl br i a dft study |
work_keys_str_mv | AT pandeyk natureofmgabondsindihalogallylcomplexesē5c5h5me3p2mgax2mferuosandē5c5h5oc2fegax2xclbriadftstudy AT patidarp natureofmgabondsindihalogallylcomplexesē5c5h5me3p2mgax2mferuosandē5c5h5oc2fegax2xclbriadftstudy AT aldridges natureofmgabondsindihalogallylcomplexesē5c5h5me3p2mgax2mferuosandē5c5h5oc2fegax2xclbriadftstudy |