Estimates of biomechanical forces in Magnaporthe grisea.

The mechanical actions of the fungus Magnaporthe grisea raise many intriguing questions concerning the forces involved. These include: (1) the material properties of the appressorial wall; (2) the strength of the adhesive that keeps the appressorium anchored to the rice leaf surface; and (3) the for...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Goriely, A, Tabor, M
التنسيق: Journal article
اللغة:English
منشور في: 2006
الوصف
الملخص:The mechanical actions of the fungus Magnaporthe grisea raise many intriguing questions concerning the forces involved. These include: (1) the material properties of the appressorial wall; (2) the strength of the adhesive that keeps the appressorium anchored to the rice leaf surface; and (3) the forces involved in the penetration process whereby a peg is driven through the host cell wall. In this paper we give order of magnitude estimates for all three of these quantities. A simple Young-Laplace law type argument is used to show that the appressorial wall elastic modulus is of order 10-100 MPa; and an adaptation of standard adhesion theory indicates a lower bound on the strength of the appressorial adhesive to be of the order 500 J/m(2). Drawing on ideas from plasticity theory and ballistics, estimates of the penetration force raise interesting questions about experiments performed on the penetration of inert substrates by the fungus.