On an Erdős–Kac-type conjecture of Elliott

Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptoti...

Full description

Bibliographic Details
Main Authors: Gorodetsky, O, Grimmelt, L
Format: Journal article
Language:English
Published: Oxford University Press 2024
_version_ 1817931488821248000
author Gorodetsky, O
Grimmelt, L
author_facet Gorodetsky, O
Grimmelt, L
author_sort Gorodetsky, O
collection OXFORD
description Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptotic to $\phi(n)\int_{-\infty}^{\lambda} \mathrm{e}^{-t^2/2}\,\mathrm{d}t/\sqrt{2\pi}$. We show that this conjecture follows from the Bombieri–Vinogradov theorem. We further prove a related result involving Poisson–Dirichlet distribution, employing deeper lying level of distribution results of the primes.
first_indexed 2024-12-09T03:22:49Z
format Journal article
id oxford-uuid:b12c6ae9-e2c1-4b2d-8635-9b64bf0516e6
institution University of Oxford
language English
last_indexed 2024-12-09T03:22:49Z
publishDate 2024
publisher Oxford University Press
record_format dspace
spelling oxford-uuid:b12c6ae9-e2c1-4b2d-8635-9b64bf0516e62024-11-20T11:10:22ZOn an Erdős–Kac-type conjecture of ElliottJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b12c6ae9-e2c1-4b2d-8635-9b64bf0516e6EnglishSymplectic ElementsOxford University Press2024Gorodetsky, OGrimmelt, LElliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptotic to $\phi(n)\int_{-\infty}^{\lambda} \mathrm{e}^{-t^2/2}\,\mathrm{d}t/\sqrt{2\pi}$. We show that this conjecture follows from the Bombieri–Vinogradov theorem. We further prove a related result involving Poisson–Dirichlet distribution, employing deeper lying level of distribution results of the primes.
spellingShingle Gorodetsky, O
Grimmelt, L
On an Erdős–Kac-type conjecture of Elliott
title On an Erdős–Kac-type conjecture of Elliott
title_full On an Erdős–Kac-type conjecture of Elliott
title_fullStr On an Erdős–Kac-type conjecture of Elliott
title_full_unstemmed On an Erdős–Kac-type conjecture of Elliott
title_short On an Erdős–Kac-type conjecture of Elliott
title_sort on an erdos kac type conjecture of elliott
work_keys_str_mv AT gorodetskyo onanerdoskactypeconjectureofelliott
AT grimmeltl onanerdoskactypeconjectureofelliott