On an Erdős–Kac-type conjecture of Elliott
Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptoti...
Päätekijät: | Gorodetsky, O, Grimmelt, L |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Oxford University Press
2024
|
Samankaltaisia teoksia
-
On a conjecture of Erdős
Tekijä: Chen, Yong-Gao, et al.
Julkaistu: (2022-09-01) -
The Cameron-Erdos Conjecture
Tekijä: Green, B
Julkaistu: (2003) -
Analytic Erdös-Turán conjectures and Erdös-Fuchs theorem
Tekijä: L. Haddad, et al.
Julkaistu: (2005-01-01) -
The Erdős-Sós conjecture for geometric graphs
Tekijä: Luis Barba, et al.
Julkaistu: (2013-02-01) -
Kac's conjecture from Nakajima quiver varieties
Tekijä: Hausel, T
Julkaistu: (2008)