On an Erdős–Kac-type conjecture of Elliott
Elliott and Halberstam proved that $\sum_{p \lt n} 2^{\omega(n-p)}$ is asymptotic to $\phi(n)$. In analogy to the Erdős–Kac theorem, Elliott conjectured that if one restricts the summation to primes p such that $\omega(n-p)\le 2 \log \log n+\lambda(2\log \log n)^{1/2}$ then the sum will be asymptoti...
主要な著者: | Gorodetsky, O, Grimmelt, L |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Oxford University Press
2024
|
類似資料
-
On a conjecture of Erdős
著者:: Chen, Yong-Gao, 等
出版事項: (2022-09-01) -
The Cameron-Erdos Conjecture
著者:: Green, B
出版事項: (2003) -
Analytic Erdös-Turán conjectures and Erdös-Fuchs theorem
著者:: L. Haddad, 等
出版事項: (2005-01-01) -
The Erdős-Sós conjecture for geometric graphs
著者:: Luis Barba, 等
出版事項: (2013-02-01) -
Kac's conjecture from Nakajima quiver varieties
著者:: Hausel, T
出版事項: (2008)