Geodesics and compression bodies
We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, i...
Egile Nagusiak: | Lackenby, M, Purcell, J |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Taylor and Francis Inc.
2013
|
Antzeko izenburuak
-
MONOPOLES AND GEODESICS
nork: Hitchin, N
Argitaratua: (1982) -
Carroll geodesics
nork: Luca Ciambelli, et al.
Argitaratua: (2024-09-01) -
The geometry of geodesics /
nork: Busemann, Herbert, 1905-
Argitaratua: (1955) -
Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces
nork: Wang, Xiaoning, et al.
Argitaratua: (2018) -
Geodesic completeness of effective null geodesics in regular space-times with non-linear electrodynamics
nork: Merce Guerrero, et al.
Argitaratua: (2023-09-01)