Geodesics and compression bodies
We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, i...
Auteurs principaux: | Lackenby, M, Purcell, J |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Taylor and Francis Inc.
2013
|
Documents similaires
-
MONOPOLES AND GEODESICS
par: Hitchin, N
Publié: (1982) -
Carroll geodesics
par: Luca Ciambelli, et autres
Publié: (2024-09-01) -
The geometry of geodesics /
par: Busemann, Herbert, 1905-
Publié: (1955) -
Discrete geodesic graph (DGG) for computing geodesic distances on polyhedral surfaces
par: Wang, Xiaoning, et autres
Publié: (2018) -
Geodesic completeness of effective null geodesics in regular space-times with non-linear electrodynamics
par: Merce Guerrero, et autres
Publié: (2023-09-01)