Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints
We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e., problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating...
Hlavní autoři: | Cartis, C, Gould, N, Toint, P |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Society for Industrial and Applied Mathematics
2020
|
Podobné jednotky
-
Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth optimization
Autor: Cartis, C, a další
Vydáno: (2018) -
An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
Autor: Cartis, C, a další
Vydáno: (2012) -
On the Oracle Complexity of First-Order and Derivative-Free Algorithms for Smooth Nonconvex Minimization.
Autor: Cartis, C, a další
Vydáno: (2012) -
Complexity bounds for second-order optimality in unconstrained optimization.
Autor: Cartis, C, a další
Vydáno: (2012) -
On the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization Problems.
Autor: Cartis, C, a další
Vydáno: (2010)