Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery
<p><strong>Background:</strong> Blood transfusion can be a lifesaving intervention after perioperative blood loss. Many prediction models have been developed to identify patients most likely to require blood transfusion during elective surgery, but it is unclear whether any are sui...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Elsevier
2023
|
_version_ | 1826312064294977536 |
---|---|
author | Dhiman, P Ma, J Gibbs, VN Rampotas, A Kamal, H Arshad, SS Kirtley, S Doree, C Murphy, MF Collins, GS Palmer, AJR |
author_facet | Dhiman, P Ma, J Gibbs, VN Rampotas, A Kamal, H Arshad, SS Kirtley, S Doree, C Murphy, MF Collins, GS Palmer, AJR |
author_sort | Dhiman, P |
collection | OXFORD |
description | <p><strong>Background:</strong> Blood transfusion can be a lifesaving intervention after perioperative blood loss. Many prediction models have been developed to identify patients most likely to require blood transfusion during elective surgery, but it is unclear whether any are suitable for clinical practice.</p>
<p><strong>Study Design and Setting:</strong> We conducted a systematic review, searching MEDLINE, Embase, PubMed, The Cochrane Library, Transfusion Evidence Library, Scopus, and Web of Science databases for studies reporting the development or validation of a blood transfusion prediction model in elective surgery patients between January 1, 2000 and June 30, 2021. We extracted study characteristics, discrimination performance (c-statistics) of final models, and data, which we used to perform risk of bias assessment using the Prediction model risk of bias assessment tool (PROBAST).</p>
<p><strong>Results:</strong> We reviewed 66 studies (72 developed and 48 externally validated models). Pooled c-statistics of externally validated models ranged from 0.67 to 0.78. Most developed and validated models were at high risk of bias due to handling of predictors, validation methods, and too small sample sizes.</p>
<p><strong>Conclusion:</strong> Most blood transfusion prediction models are at high risk of bias and suffer from poor reporting and methodological quality, which must be addressed before they can be safely used in clinical practice.</p> |
first_indexed | 2024-03-07T08:22:02Z |
format | Journal article |
id | oxford-uuid:b2292382-1013-470f-a015-1cba974f8e37 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T08:22:02Z |
publishDate | 2023 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:b2292382-1013-470f-a015-1cba974f8e372024-01-29T16:20:52ZSystematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgeryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b2292382-1013-470f-a015-1cba974f8e37EnglishSymplectic ElementsElsevier2023Dhiman, PMa, JGibbs, VNRampotas, AKamal, HArshad, SSKirtley, SDoree, CMurphy, MFCollins, GSPalmer, AJR<p><strong>Background:</strong> Blood transfusion can be a lifesaving intervention after perioperative blood loss. Many prediction models have been developed to identify patients most likely to require blood transfusion during elective surgery, but it is unclear whether any are suitable for clinical practice.</p> <p><strong>Study Design and Setting:</strong> We conducted a systematic review, searching MEDLINE, Embase, PubMed, The Cochrane Library, Transfusion Evidence Library, Scopus, and Web of Science databases for studies reporting the development or validation of a blood transfusion prediction model in elective surgery patients between January 1, 2000 and June 30, 2021. We extracted study characteristics, discrimination performance (c-statistics) of final models, and data, which we used to perform risk of bias assessment using the Prediction model risk of bias assessment tool (PROBAST).</p> <p><strong>Results:</strong> We reviewed 66 studies (72 developed and 48 externally validated models). Pooled c-statistics of externally validated models ranged from 0.67 to 0.78. Most developed and validated models were at high risk of bias due to handling of predictors, validation methods, and too small sample sizes.</p> <p><strong>Conclusion:</strong> Most blood transfusion prediction models are at high risk of bias and suffer from poor reporting and methodological quality, which must be addressed before they can be safely used in clinical practice.</p> |
spellingShingle | Dhiman, P Ma, J Gibbs, VN Rampotas, A Kamal, H Arshad, SS Kirtley, S Doree, C Murphy, MF Collins, GS Palmer, AJR Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title | Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title_full | Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title_fullStr | Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title_full_unstemmed | Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title_short | Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
title_sort | systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery |
work_keys_str_mv | AT dhimanp systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT maj systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT gibbsvn systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT rampotasa systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT kamalh systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT arshadss systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT kirtleys systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT doreec systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT murphymf systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT collinsgs systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery AT palmerajr systematicreviewhighlightshighriskofbiasofclinicalpredictionmodelsforbloodtransfusioninpatientsundergoingelectivesurgery |