On the complexity of Hilbert refutations for partition

Given a set of integers W, the Partition problem determines whether W can be divided into two disjoint subsets with equal sums. We model the Partition problem as a system of polynomial equations, and then investigate the complexity of a Hilbert's Nullstellensatz refutation, or certificate, that...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Margulies, S, Onn, S, Pasechnik, D
Ձևաչափ: Journal article
Հրապարակվել է: 2015
Նկարագրություն
Ամփոփում:Given a set of integers W, the Partition problem determines whether W can be divided into two disjoint subsets with equal sums. We model the Partition problem as a system of polynomial equations, and then investigate the complexity of a Hilbert's Nullstellensatz refutation, or certificate, that a given set of integers is not partitionable. We provide an explicit construction of a minimum-degree certificate, and then demonstrate that the Partition problem is equivalent to the determinant of a carefully constructed matrix called the partition matrix. In particular, we show that the determinant of the partition matrix is a polynomial that factors into an iteration over all possible partitions of W. © 2014.