Learning the fuzzy phases of small photonic condensates

Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibr...

Full description

Bibliographic Details
Main Authors: Rodrigues, JD, Dhar, HS, Walker, BT, Smith, JM, Oulton, RF, Mintert, F, Nyman, RA
Format: Journal article
Language:English
Published: American Physical Society 2021
Description
Summary:Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified. However, the small photon number and the presence of large relative fluctuations places major difficulties in identifying different phases and phase transitions. We overcome this limitation by employing unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of even small collections of photons, making them an ideal platform to investigate equilibrium and nonequilibrium physics at the few particle level.