End-to-end learning, and audio-visual human-centric video understanding
<p>The field of machine learning has seen tremendous progress in the last decade, largely due to the advent of deep neural networks. When trained on large-scale labelled datasets, these machine learning algorithms can learn powerful semantic representations directly from the input data, end-to...
第一著者: | Brown, A |
---|---|
その他の著者: | Zisserman, A |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2022
|
主題: |
類似資料
-
Sign language understanding using multimodal learning
著者:: Momeni, L
出版事項: (2024) -
Video understanding using multimodal deep learning
著者:: Nagrani, A
出版事項: (2020) -
Deep vision for indoor understanding and localisation
著者:: Howard-Jenkins, H
出版事項: (2022) -
END TO END LEARNING FOR A DRIVING SIMULATOR
著者:: V. F. Alexeev, 等
出版事項: (2019-06-01) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
著者:: Tomoya Sato, 等
出版事項: (2022-01-01)