Continuous hierarchical representations with poincaré Variational Auto-Encoder
The Variational Auto-Encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces w...
Những tác giả chính: | Mathieu,E, Le Lan, C, Maddison, CJ, Tomioka, R, Teh, YW |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Curran Associates
2019
|
Những quyển sách tương tự
-
Partial disentanglement of hierarchical variational auto‐encoder for texture synthesis
Bằng: Marek Jakab, et al.
Được phát hành: (2020-12-01) -
VAEEG: Variational auto-encoder for extracting EEG representation
Bằng: Tong Zhao, et al.
Được phát hành: (2024-12-01) -
Representation learning by hierarchical ELM auto‐encoder with double random hidden layers
Bằng: Rui Li, et al.
Được phát hành: (2019-06-01) -
Hamiltonian Variational Auto-Encoder
Bằng: Caterini, A, et al.
Được phát hành: (2019) -
Conditional Variational AutoEncoder based on Stochastic Attacks
Bằng: Gabriel Zaid, et al.
Được phát hành: (2023-03-01)