BlackBIRDS: Black-Box Inference foR Differentiable Simulators
BlackBIRDS is a Python package consisting of generically applicable, black-box inference methods for differentiable simulation models. It facilitates both (a) the differentiable implementation of simulation models by providing a common object-oriented framework for their implementation in PyTorch (P...
主要な著者: | Quera-Bofarull, A, Dyer, J, Calinescu, A, Farmer, JD, Wooldridge, M |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Open Journal
2023
|
類似資料
-
Population synthesis as scenario generation for simulation-based planning under uncertainty
著者:: Dyer, J, 等
出版事項: (2024) -
Gradient-assisted calibration for financial agent-based models
著者:: Dyer, J, 等
出版事項: (2023) -
Black-box Bayesian inference for agent-based models
著者:: Dyer, J, 等
出版事項: (2024) -
Gradient-Assisted Calibration for Financial Agent-Based Models
著者:: Dyer, Joel, 等
出版事項: (2023) -
Don’t simulate twice: one-shot sensitivity analyses via automatic differentiation
著者:: Quera-Bofarull, A, 等
出版事項: (2023)