On divergence-free drifts
We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t-Δ+b-∇ resp. -Δ+b-∇ with a divergence-free drift b. We prove the Liouville theorem a...
Hlavní autoři: | Seregin, G, Silvestre, L, Sverak, V, Zlatos, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2012
|
Podobné jednotky
-
Parabolic equations with singular divergence‐free drift vector fields
Autor: Qian, Z, a další
Vydáno: (2018) -
On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
Autor: Seregin, G, a další
Vydáno: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
Autor: Seregin, G, a další
Vydáno: (2016) -
Markov semi-groups generated by elliptic operators with divergence-free drift
Autor: Qian, Z, a další
Vydáno: (2021) -
Hölder estimates for fractional parabolic equations with critical divergence free drifts
Autor: Delgadino, MG, a další
Vydáno: (2017)