On divergence-free drifts
We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t-Δ+b-∇ resp. -Δ+b-∇ with a divergence-free drift b. We prove the Liouville theorem a...
Main Authors: | Seregin, G, Silvestre, L, Sverak, V, Zlatos, A |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
2012
|
Podobne knjige/članki
-
Parabolic equations with singular divergence‐free drift vector fields
od: Qian, Z, et al.
Izdano: (2018) -
On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations
od: Seregin, G, et al.
Izdano: (2009) -
On global weak solutions to the Cauchy problem for the Navier-Stokes equations with large L3-initial data
od: Seregin, G, et al.
Izdano: (2016) -
Markov semi-groups generated by elliptic operators with divergence-free drift
od: Qian, Z, et al.
Izdano: (2021) -
Hölder estimates for fractional parabolic equations with critical divergence free drifts
od: Delgadino, MG, et al.
Izdano: (2017)