Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
المؤلفون الرئيسيون: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
التنسيق: | Internet publication |
اللغة: | English |
منشور في: |
arXiv
2018
|
مواد مشابهة
-
Deep Frank-Wolfe for neural network optimization
حسب: Berrada, L, وآخرون
منشور في: (2019) -
Training neural networks for and by interpolation
حسب: Berrada, L, وآخرون
منشور في: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
حسب: Weber, Melanie, وآخرون
منشور في: (2022) -
Riemannian optimization via Frank-Wolfe methods
حسب: Weber, M, وآخرون
منشور في: (2022) -
New analysis and results for the Frank–Wolfe method
حسب: Freund, Robert Michael, وآخرون
منشور في: (2016)