Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Autors principals: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Format: | Internet publication |
Idioma: | English |
Publicat: |
arXiv
2018
|
Ítems similars
-
Deep Frank-Wolfe for neural network optimization
per: Berrada, L, et al.
Publicat: (2019) -
Training neural networks for and by interpolation
per: Berrada, L, et al.
Publicat: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
per: Weber, Melanie, et al.
Publicat: (2022) -
Riemannian optimization via Frank-Wolfe methods
per: Weber, M, et al.
Publicat: (2022) -
New analysis and results for the Frank–Wolfe method
per: Freund, Robert Michael, et al.
Publicat: (2016)