Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Hlavní autoři: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Médium: | Internet publication |
Jazyk: | English |
Vydáno: |
arXiv
2018
|
Podobné jednotky
-
Deep Frank-Wolfe for neural network optimization
Autor: Berrada, L, a další
Vydáno: (2019) -
Training neural networks for and by interpolation
Autor: Berrada, L, a další
Vydáno: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
Autor: Weber, Melanie, a další
Vydáno: (2022) -
Riemannian optimization via Frank-Wolfe methods
Autor: Weber, M, a další
Vydáno: (2022) -
New analysis and results for the Frank–Wolfe method
Autor: Freund, Robert Michael, a další
Vydáno: (2016)