Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Hauptverfasser: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Format: | Internet publication |
Sprache: | English |
Veröffentlicht: |
arXiv
2018
|
Ähnliche Einträge
Ähnliche Einträge
-
Deep Frank-Wolfe for neural network optimization
von: Berrada, L, et al.
Veröffentlicht: (2019) -
Training neural networks for and by interpolation
von: Berrada, L, et al.
Veröffentlicht: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
von: Weber, Melanie, et al.
Veröffentlicht: (2022) -
Riemannian optimization via Frank-Wolfe methods
von: Weber, M, et al.
Veröffentlicht: (2022) -
New analysis and results for the Frank–Wolfe method
von: Freund, Robert Michael, et al.
Veröffentlicht: (2016)