Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Κύριοι συγγραφείς: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Μορφή: | Internet publication |
Γλώσσα: | English |
Έκδοση: |
arXiv
2018
|
Παρόμοια τεκμήρια
-
Deep Frank-Wolfe for neural network optimization
ανά: Berrada, L, κ.ά.
Έκδοση: (2019) -
Training neural networks for and by interpolation
ανά: Berrada, L, κ.ά.
Έκδοση: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
ανά: Weber, Melanie, κ.ά.
Έκδοση: (2022) -
Riemannian optimization via Frank-Wolfe methods
ανά: Weber, M, κ.ά.
Έκδοση: (2022) -
New analysis and results for the Frank–Wolfe method
ανά: Freund, Robert Michael, κ.ά.
Έκδοση: (2016)