Deep Frank-Wolfe for neural network optimization

Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...

ver descrição completa

Detalhes bibliográficos
Principais autores: Berrada, L, Zisserman, A, Kumar, MP
Formato: Internet publication
Idioma:English
Publicado em: arXiv 2018

Registros relacionados