Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Главные авторы: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Формат: | Internet publication |
Язык: | English |
Опубликовано: |
arXiv
2018
|
Схожие документы
-
Deep Frank-Wolfe for neural network optimization
по: Berrada, L, и др.
Опубликовано: (2019) -
Training neural networks for and by interpolation
по: Berrada, L, и др.
Опубликовано: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
по: Weber, Melanie, и др.
Опубликовано: (2022) -
Riemannian optimization via Frank-Wolfe methods
по: Weber, M, и др.
Опубликовано: (2022) -
New analysis and results for the Frank–Wolfe method
по: Freund, Robert Michael, и др.
Опубликовано: (2016)