Deep Frank-Wolfe for neural network optimization
Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm...
Asıl Yazarlar: | Berrada, L, Zisserman, A, Kumar, MP |
---|---|
Materyal Türü: | Internet publication |
Dil: | English |
Baskı/Yayın Bilgisi: |
arXiv
2018
|
Benzer Materyaller
-
Deep Frank-Wolfe for neural network optimization
Yazar:: Berrada, L, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Training neural networks for and by interpolation
Yazar:: Berrada, L, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Riemannian Optimization via Frank-Wolfe Methods
Yazar:: Weber, Melanie, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Riemannian optimization via Frank-Wolfe methods
Yazar:: Weber, M, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
New analysis and results for the Frank–Wolfe method
Yazar:: Freund, Robert Michael, ve diğerleri
Baskı/Yayın Bilgisi: (2016)