Commensurations of subgroups of Out(FN)
A theorem of Farb and Handel [FH07] asserts that for N ≥ 4, the natural inclusion from Out(FN ) into its abstract commensurator is an isomorphism. We give a new proof of their result, which enables us to generalize it to the case where N = 3. More generally, we give sufficient conditions on a subgro...
Hauptverfasser: | Horbez, C, Wade, R |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
American Mathematical Society
2020
|
Ähnliche Einträge
-
Commensurations of Aut(F_N) and its Torelli subgroup
von: Bridson, M, et al.
Veröffentlicht: (2024) -
On the topological dimension of the Gromov boundaries of some hyperbolic Out$(F_N)$-graphs
von: Bestvina, M, et al.
Veröffentlicht: (2020) -
Groups with many Subgroups which are Commensurable with some Normal Subgroup
von: Ulderico Dardano, et al.
Veröffentlicht: (2019-06-01) -
A structural property concerning abstract commensurability of subgroups
von: Grigorchuk, R, et al.
Veröffentlicht: (2003) -
Commensurability and Difference
von: Geir Sigurðsson
Veröffentlicht: (2023-01-01)