Commensurations of subgroups of Out(FN)
A theorem of Farb and Handel [FH07] asserts that for N ≥ 4, the natural inclusion from Out(FN ) into its abstract commensurator is an isomorphism. We give a new proof of their result, which enables us to generalize it to the case where N = 3. More generally, we give sufficient conditions on a subgro...
主要な著者: | Horbez, C, Wade, R |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
American Mathematical Society
2020
|
類似資料
-
Commensurations of Aut(F_N) and its Torelli subgroup
著者:: Bridson, M, 等
出版事項: (2024) -
On the topological dimension of the Gromov boundaries of some hyperbolic Out$(F_N)$-graphs
著者:: Bestvina, M, 等
出版事項: (2020) -
Groups with many Subgroups which are Commensurable with some Normal Subgroup
著者:: Ulderico Dardano, 等
出版事項: (2019-06-01) -
A structural property concerning abstract commensurability of subgroups
著者:: Grigorchuk, R, 等
出版事項: (2003) -
Commensurability and Difference
著者:: Geir Sigurðsson
出版事項: (2023-01-01)