Robustness evaluation of deep neural networks with provable guarantees
<p>This thesis presents methodologies to guarantee the robustness of deep neural networks, thus facilitating the deployment of deep learning techniques in safety-critical real-world systems. We study the maximum safe radius of a network with respect to an input, such that all the points within...
Автор: | Wu, M |
---|---|
Інші автори: | Kwiatkowska, M |
Формат: | Дисертація |
Мова: | English |
Опубліковано: |
2020
|
Предмети: |
Схожі ресурси
-
Global robustness evaluation of deep neural networks with provable guarantees for the Hamming distance
за авторством: Ruan, W, та інші
Опубліковано: (2019) -
Training-free neural active learning with initialization robustness guarantees
за авторством: Singh, Jasraj
Опубліковано: (2023) -
Safety verification for deep neural networks with provable guarantees
за авторством: Kwiatkowska, M
Опубліковано: (2019) -
Reachability analysis of deep neural networks with provable guarantees
за авторством: Ruan, W, та інші
Опубліковано: (2018) -
Safety and robustness for deep learning with provable guarantees (keynote)
за авторством: Kwiatkowska, M
Опубліковано: (2019)